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Abstract

Ontologies are becoming important repositories of information useful for business transactions and operations 
since they are amenable to knowledge processing using artificial intelligence techniques. They offer the potential 
of amassing large contents of relevant information, but until now the fusion or merging of ontologies, needed 
for knowledge buildup and its exploitation by machine, was done manually or through computer-aided ontology 
editors. Thus, attaining large ontologies was expensive and slow. This chapter offers a new, automatic method of 
joining two ontologies to obtain a third one. The method works well in spite of inconsistencies, redundancies, and 
different granularity of information.

Introduction

Computers are no longer isolated devices but they are 
important to the world-wide network that interchanges 
knowledge for business transactions. Nowadays, using 
the Internet to get data, information, and knowledge 
is a business need. 

Most of the important information resources that 
businessmen require are available through the Internet. 
Here, machines face the problem of heterogeneous 
sources. The computer has a hard time finding whether 
two data representations refer to the same object (a 
bill can be a bank tender or an invoice)1 because there 
are no suitable standards in knowledge representa-
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tion. This chapter addresses this need of businesses 
and academia. 

When businessmen demand answers that require 
access to several Internet data sources, they have to 
manually or mentally merge the acquired information 
in a reasonable way. It would be nice if a computer 
program helped in this very useful but tedious task. 
This chapter solves this problem, which has important 
implications (see the section on “Commercial Areas 
Ready to Exploit OM”). 

The Problem to Solve2

To merge two data sources in such a way that its com-
mon knowledge could be represented and more easily 
used in further tasks.

Computers represent the information in files, 
databases, text documents, lists, and so forth. Com-
puter merging of information in databases or in 
semistructured data, has its own challenges, and will 
not be addressed here. Merging information stored 
in documents is done manually, since the computer 
does not “understand” what a document says. If the 
information is stored in spreadsheets, merging can be 
done by a computer-aided person who understands the 
contents of different cells and their units. Information 
can also be stored in ontologies and thus be subject to 
merging. So far, merging of ontologies has been done 
manually (see the section on “Ontology Merging”) 
using an ontology editor.

Ontology

An ontology is a data structure where information 
is stored as nodes (representing concepts such as 
hammer, printer, document, appearing in this 
chapter in Courier font) and relations (represent-
ing restrictions among nodes, such as cuts, transcribes, 
or hair color, appearing in this chapter in Arial Narrow 
font, as in (hammer cuts wood), (printer transcribes 
document), Figure 9. Usually, the information it 
stores is “high level” and it is known as knowledge. 
For working purposes, we further restrict this defi-

nition to those data structures compliant with OM 
notation (quo vide).

Ontologies are useful when arbitrary relations need 
to be represented; one has more freedom to represent 
different types of concepts.

Current notations to represent ontologies are 
DAML+OIL (Connoly et al., 2001), RDF (Manola 
& Miller, 2004) and OWL (Bechnofer et al., 2004). 
These languages are a notable accomplishment, but 
some lack certain features:

•	 A relation can not be a concept. For instance, 
if color is a relation, it is difficult to relate color 
to other concepts (such as shape) by using other 
relations.

•	 Partitions (subsets with additional properties, see 
the section on “Contributions of OM Notation”) 
can not be represented.

This chapter offers the OM notation to represent 
ontologies that solves above problems and better 
represents the semantics involved.

Ontology Merging

Realizing the importance of the problem to solve, dif-
ferent scientists have approached it. Previous works 
incudes CYC (Lenat & Guha, 1989), whose goal was to 
represent common sense knowledge in a gigantic hand-
built ontology. CYC does not do merging. Prompt (Noy 
& Musen, 2000), Chimaera (McGuinness, Fikes, Rice, 
& Wilder, 2000), OntoMerge (Stumme & Maedche, 
2002) and ISI (Loom) rely on the user to solve the 
most important problems found in the process, and 
are considered non automatic methods. FCA-Merge 
(Dou, McDermott, & Qi, 2002) and IF-Map (Kalfoglou 
& Schorlemmer, 2002) require consistent ontologies 
that are expressed in a formal notation employed in 
Formal Concept Analysis (Ganter, Stumme, & Wille, 
2005) which limits their use. Hcone (Kotis, Vouros, & 
Stergiou, 2006) uses WordNet and a formal approach 
to ontology merging. Cuevas-Rasgado (2006) mentions 
additional previous works. 
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Our solution to the above problem is the OM 
algorithm, which performs the fusion in a robust3 
consistent,4 complete,5 and automatic6 manner. When 
compared with fusion done by hand and with current 
computer-assisted methods, OM does “very good” 
(≈ 96%, Table 1), but manual methods may achieve 
100% accuracy, depending on the user or expert that 
makes the correct choices, solves contradictions, 
and eliminates redundancies. OM also fused some 
ontologies expressed in current ontology languages, 
hand-translated to OM notation. The results are good 
(100%, Table 1) but care should be exercised: the on-
tologies merged contain only shallow information,9 
most are merely a taxonomy.

The section on “OM Notation” explains the OM 
notation, and the section on “OM Algorithm for Au-
tomatic Merging of Ontologies” the OM algorithm. 
The chapter concludes with examples.

Increased Yield Through Better 
Processing the Web Resources

This chapter describes important contributions to-
wards the task of obtaining more benefits from Web 
resources: (1) the OM notation, (2) the OM algorithm, 
which automatically merges two ontologies, (3) a map-
ping algorithm among ontologies, called COM (see the 
section on “The Comparison Function COM”), that 
finds similarity among concepts belonging to differ-
ent ontologies, and (4) the use and exploitation of a 
theory that measures the confusion (see the section 
on “Confusion”) in using a symbolic value instead of 
another (the intended value). This theory solves some 
inconsistencies arising during the union of ontologies 
and lets the process proceed further.

In addition to being useful for businesses, ontol-
ogy merging is an Artificial Intelligence (AI) tool that 
could harvest the knowledge (in a given area, say, oil 
production) available in the Web from documents 
in English and other natural languages, and (if they 
were translated to our ontology format)7 automatically 
produce a new ontology that captures the (total, joint) 
knowledge available in all these documents. How? By 
joining consecutively ontology after ontology from 

those documents. See the section on “Suggestions for 
Further Work” for uses of this joint knowledge.

Issues, Problems, and Trends

One of the hard problems keeping AI people busy is 
how to provide the computer with a “deep” or “seman-
tic” understanding of the information it is processing. 
In order to give it, for instance, the ability to answer 
complex, nontrivial queries about the information it 
has. One way is to construct a large ontology, under-
standable (processable) by machine, where mechani-
cal reasoning could be achieved. Initially, a 10-year 
project (Lenat & Guha, 1989) was going to build by 
hand the common sense ontology. As time passed, 
numerous groups hand-crafted their own ontologies. 
People wondered how to map a concept from one 
of these ontologies to the closest concept in another 
ontology, and Guzman and Olivares (2004) were the 
first to solve this. OM uses and has improved their 
COM algorithm. See the section on “The Comparison 
Function COM”. Inspired in COM, Cuevas-Rasgado 
(2006) reflected that automatic ontology merging was 
possible and desirable. This chapter presents her work. 
Until now, merging of ontologies was accomplished 
with the help of a user that resolved differences and 
made important decisions.

The trend is now clear: keep improving the merging 
algorithms, giving them access to “semantic sources 
of knowledge” (see the section, “Discussion”), and to 
knowledge previously processed (see the section on 
“Suggestions for Further Work”), in order to continue 
adding pieces of knowledge to growing ontology, which 
could be one day “the ontology of knowledge,” much as 
Wikipedia is now the encyclopedia of knowledge.

Knowledge Support for OM

OM uses some built-in knowledge resources, which 
help to detect contradictions, find synonyms, and the 
like. These are:

1.	 Stop words (in, the, for, this, those, it, and, or…) 
are ignored form word phrases;



386  

A Language and Algorithm for Automatic Merging of Ontologies

2.	 It takes into account words that change the 
meaning of a relation (without, except…);

3.	 Hierarchies (simplified ontologies, merely trees 
of concepts where each node is a concept or, if 
it is a set, its descendants must form a partition 
of it) represent a taxonomy of related terms, and 
are used to measure confusion (See the section 
on “Confusion”), and later can be used for 
synonym detection. Guzman and Levachkine 
(2004) explain how to build these hierarchies.

Future additions include using a stemmer, to find 
the root of words (love, lover, lovingly…), reliance on 
linguistic resources such as WordNet, use of a diction-
ary to find synonyms, homonyms, and so forth. The 
result of previous fusions could also be part of the 
built-in knowledge base for OM.

OM Notation

OM Notation represents ontologies through a structural 
design with XML-like labels, identifying the concepts 
and their relations. See Figure 1.

The label of each concept (such as thing) comes 
after <concept>; the language of the concept’s defini-
tion (such as English) goes between <language> and 
</language>; the definition of the concept (such as con-
crete_object, physical_object) goes between <word> 
and </word>; the relations of the concept (such as eats) 
go between <relation> and </relation>. The descrip-
tion of a concept ends in </concept>. Nested concepts 
(such as physical_object within thing) indicate that 
physical_object is subordinate (or hyponym) of thing, 
the precise meaning of this subordination is indicated 
by <subset> thing </subset> (physical_object ⊂ thing) 

Figure 1. Representation of an ontology in OM notation
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The relations expressed by nesting are called implicit 
relations. Currently, they are member of, part of, subset 
(represented in this chapter as ⊂), and part* (“one of 
my domain elements is part of one of my codomain 
elements,” as in country part* continent). The other 
relations, such as eats, are called explicit. These are 
known elsewhere as properties or attributes of the 
concept. Cuevas-Resgado (2006) gives a complete 
description of the OM notation

In OM Notation, a relation can be n-ary; a relation 
relates nodes (concepts); a relation can be a concept 
(a node), too. For example, the Zebra concept has a 
Color relation that connects to two elements White 
and Black. Relations can be considered as proper-
ties or characteristics of the node or concept where 
they are defined. Nested concepts imply subordinate 
relations (see the caption of Figure 1).

Contributions of OM Notation

Most important are:

a.	 Ability to represent partitions. A partition of a 
set is a collection of subsets such that any two of 
them are mutually exclusive, and all are collec-
tively exhaustive. OM can represent partitions, 
while current ontology languages (DAML, RDF, 
OWL) can not. For instance, not only male _
person and female _ person are subsets 
of person, they are a partition of person. 
Alternatively, the gender of a person will tell 
us to which of the partitions male _ person 
or female _ person the person belongs.

b.	 A concept also can be a relation. Often, ontologies 
are represented as a graph O = (C, R) consist-
ing of two disjoint sets: C (nodes, or concepts) 
and R (edges, or relations).8 Two disadvantages 
of this visually oriented approach are: all the 
relations are binary and a concept can not be a 
relation. In OM, it is possible9 to add relations 
to a relation, to provide more semantics. For 
example, one can say Mary Washington 
mother of George Washington to indicate 
that Mary is Washington’s mother, but mother_of 

can be a concept that contains more information, 
for instance, related to child_of by the relation 
inverse.10 

c.	 OM’s graphs are hypergraphs, since relations 
are n-ary.

OM Algorithm for Automatic 
Merging of Ontologies

This algorithm fuses two ontologies A and B, building a 
third ontology C = A ∪ B containing the information in 
A, plus the information in B not contained in A, without 
repetitions (redundancies) or contradictions.

The information in B not contained in A can be: 
(1) new nodes, for instance B contains information 
about dinosaurs, which A lacks; (2) new relations, 
for instance, B knows that Gabriel García Márquez 
wrote The Colonel has Nobody to write to him, in ad-
dition to One Hundred Years of Loneliness, already 
known to A; (3) improved or more precise relations, 
for instance A knows that Abraham Lincoln was born 
in United States, while B knows that Lincoln was 
born in Kentucky; (4) new synonyms in B for current 
nodes in A enrich A; and (5) relations can be better 
defined in B, for instance B has a better description 
of lend money to than A. Thus, the addition of B to A 
is “carefully done” by OM.

OM proceeds and Cuevas-Rasgado (2006) gives 
more details:

1.	 C ← A. Ontology A is copied into C.
2.	 Search in B each concept CC of C.11 This 

step describes the deep copy of a concept.12 At 
the start of the search, concept CC is the root 
of ontology C. Then, CC will be each of the 
descendants of CC, and so on, so that each of 
the nodes of ontology C will be visited by CC.13 
For each CC, COM looks for the concept that 
best resembles CC in B, such concept is called 
the most similar concept in B to CC, or cms. Two 
cases exist:
a.	  If CC has a most similar concept 

cms in B, then:
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i.		  Relations that are synonyms (see 
the section on “Knowledge Sup-
port for OM”) are enriched. To 
enrich a concept CC is to add to its 
definition the new words that are 
in the definition of cms, when CC 
and cms are synonyms. 14

ii.		  New relations (including parti-
tions) that cms has in B, are added 
to CC.
1.	 For each added relation, 

concepts related by that rela-
tion and not present in C are 
copied to C. Example: if cms 
color red and concept red 
is not in C, it is copied to C, 
together with its ascendants 
who are not present in C.

	 In this step we copy partitions 
of CC, if they exist, since they 
are relations, too.

iii.		  Inconsistencies between the rela-
tions of CC and those of cms are 
detected.
1.	 If it is possible, by using 

confusion (see the section 
on “Confusion”), to resolve 
the inconsistency, the correct 
concepts are added to C. For 
instance, in Contribution g, 
ontology A says AcmeCorp 
incorporated_in Maryland 
and B says AcmeCorp 
incorporated_in USA. Since in-
corporated_in can only have 
a single value, a contradiction 
is detected and solved, thus 
AcmeCorp incorporated_in 
Maryland is added to CC.

2.	 When the inconsistency can 
not be solved, OM rejects the 
contradicting information in 
B, and CC keeps the original 
relation coming from A.21 

iv.		  Concepts that are descendants of 
cms not present in C are copied to 
C, in a superficial manner.11

b.	 CC can not find in B a good resem-
blance. That is, B contains no object cms 
resembling CC.
i.		  Take the next descendant of CC, 

which will become the new CC. 
ii.		  Go to step 2 until all the nodes of 

C are visited (including the new 
nodes that were being superficially 
added by OM). 

The Comparison Function COM

Four cases are used to find cms = COM(CC, B), the 
most similar concept in ontology B to the concept CC 
in ontology C. Guzman and Olivares (2004) explain 
COM in detail.

CASE A. A concept CB having a definition similar to 
the definition of CC is found in B, and the parento 
of CB has a definition matching the definition 
of the parent15 of CC. In this case, COM returns 
cms = CB. See figure 2.

CASE B. CC does not find a similar concept in B 
matching CC, but the parent (let us call it PC) of 
CC finds a match with a node PB in B. Then, we 
search for a son (or grandson, or nephew) of PB 
having most of its relations match (using COM) 
with those of CC. If such candidate has also de-
scendants, do they coincide with the descendants 
of CC? The best candidate becomes cms. If no 
candidate is good enough, COM returns cms = 
“son of PB” (meaning that CC must be some son 
of node PB, unknown to B). In this case, OM 
will try to merge PB with PC.

CASE C. CC finds a match CB in B, but the parents PC 
and PB (of CC and CB) do not match. COM verifies 
if most of the relations of CC correspond to those 
in the candidate, and if most of the descendants 
of CC match those of the candidate CB. That being 
the case, it returns the CB with the best match as 
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cms. If only some properties of CC and CB match, 
COM returns cms = “probably CB.” OM treats 
this (arbitrarily) as a match between CC and CB.16 
If few or no properties of any candidate match, 
COM returns “no match” (Figure 3).

CASE D. CC does not find a match in B, and neither its 
parent PC does. COM returns “no match.” 

Confusion

I ask for a European car, and I get a German car. Is 
there an error? Now, I ask for a German car, and a 
European car comes. Can we measure this error? Can 
we systematize or organize these values? Hierarchies 
of symbolic values allow measuring the similar-
ity between these values, and the error when one is 
used instead of another (the intended or real value). 
This measurement is accomplished by the theory of 
confusion (Guzman & Levachkine, 2004) and the 
function conf, which is used by OM to solve some 
inconsistencies.

Confusion, contradiction, or inconsistency arise 
when a concept in A has a relation that is incompatible, 
contradicts or negates other relation of the same concept 
in B. For instance, Earth in A has shape flat; and in 
B Earth has the relation shape round. Contradiction 
arises from two relations: in our example, the shapes 
are not the same, are inconsistent since shape can only 
have a single value. 

Because OM must copy concepts keeping the 
semantics of the sources in the result, and both seman-
tics are incompatible, a contradiction is detected. It is 
not possible to keep both meanings because they are 
inconsistent.17 To solve some of these inconsistencies, 
OM uses the theory of confusion.

Function CONF(r, s), called the absolute confusion, 
computes the confusion that occurs when object r is 
used instead of object s, as follows:

CONF(r, r) = CONF(r, s) = 0 when s is some ascen-
dant of r;

CONF(r, s) = 1 + CONF(r, father_of(s)) otherwise.

CONF is the number of descending links when one 
travels from r (the used value) to s (the intended or real 
value), in the hierarchy to which r and s belong.

Absolute confusion CONF returns an integer be-
tween 0 and h, where h is the height of the hierarchy 
(Figure 4). CONF is granularity-dependant, since its 
value changes merely by adding nodes between the 
root of the hierarchy and s. To make it insensitive to 
this, we normalize it by dividing into h, the height of 
the hierarchy, thus:

Definition. 
	 conf(r, s), the confusion when using r instead 

of s, is:
	 conf(r, s) = CONF(r, s) / h
conf returns a number between 0 and 1.
Example: conf(Hydrology, river) = 0.2 (Figure 4).

OM uses conf, whereas Guzman and Levachkine 
(2004) describe CONF. Confusion is not a distance. 
In general, conf (a, b) ≠ conf(b, a). conf(r, s) is do-
main-dependant, as reflected by the hierarchy used 
to compute it. 

Besides confusion, there are many forms to mea-
sure similarity or likeness between qualitative values 
r and s. For instance, seeing how far apart in Wordnet 
(wordnet.princeton.edu/) are the synsets where r and s 
lie, or comparing their definitions (or glosses) in a 
dictionary. OM uses confusion due to its asymmetry, 
but it could easily adapt or add some other similarity 
functions. A complete discussion of similarity is in 
Guzman and Levachkine (2004).

Contributions of the OM (Ontology 
Merging) Algorithm:

a.	 It is totally automatic, requiring no human 
intervention.

b.	 It handles partitions as well as subsets (explained 
in “Contributions of OM Notation”).

c.	 It handles concepts in an ontology that are 
described “shallowly” by just a word, a word 
phrase or a set of them (see footnote 9).
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d.	 Relations among nodes can also be concepts, as 
explained in “Contributions of OM Notation.”

e.	 With the help of COM, OM takes into ac-
count:
1.	 Synonyms.. Example: If A contains 

boat (“boat”, “ship”) ⊂ vessel, and 
B contains dinghy (“skipper”, “boat”) 
⊂ vessel, then C will contain boat 
(“boat”, “ship”, “skipper”) ⊂ vessel. 
Other example: In figure 2, method in A 
matches procedure in B and the parent 
(of method) technique in A matches 
the parent of procedure in B. Thus, 
this is case A of COM. Other example is 
found in part c of example 3; see Figure 
9.

2.	 Homonyms. If A contains fly ⊂ insect 
⊂ animal and B contains fly ⊂ navi-
gate, then C will contain fly ⊂ insect 
⊂ animal and fly ⊂ navigate, that is, 
OM recognizes (Case C of COM) two dif-
ferent concepts with the same name. An-
other example: if A contains the concept 
printer ⊂ company and B contains 
printer ⊂ computer peripheral, 
then C will contain both: printer ⊂ 

company and printer ⊂ computer 
peripheral, that is, OM recognizes 
both concepts as different, although they 
have the same name printer (Figure 
11).

3.	 Synonyms when considering their prop-
erties. If A has maize (“maize”) ⊂ 
cereal, color yellow, size 1cm, con-
tains hydrocarbons and B has corn 
(“corn”) ⊂ cereal, color yellow, size 
0.5inch, contains carbohydrates, 
then case B of COM will correctly identify 
maize and corn as synonyms, and thus 
will contain maize (“maize”, “corn”) 
⊂ cereal, color yellow, size 1cm 
(0.5inch), contains hydrocarbons 
(“hydrocarbon”, “carbohydrates”). That 
is, corn and maize have many proper-
ties equal or similar (by recursive use of 
COM). See Figure 3.

4.	 New knowledge. If one ontology knows 
nothing about dinosaurs, and the other 
has some concepts about them, then 
C will contain each ontology’s unique 
knowledge, appropriately referring to 
knowledge common to both ontologies, 
such as “legs” or “fly.”

Figure 2. Case A of COM Figure 3. Case C of COM
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5.	 Other cases where the knowledge in each 
ontology is properly taken into account 
are discussed in “Using OM. Examples,” 
and by Cuevas-Rasgado (2006).

f.	 OM avoids placement of redundant relations. 
If A contains lemon ⊂ fruit, and B contains 
lemon ⊂ citric ⊂ fruit, then the result-
ing merged ontology C will contain lemon ⊂ 
citric ⊂ fruit, finding that A’s knowledge 
(lemon ⊂ fruit) is redundant.

g. 	 The OM algorithm detects inconsistencies (con-
tradictions) in the knowledge in A vs. the knowl-
edge in B, using inconsistency measurements 
(Jimenez, n.d.) and confusion. An example where 
inconsistency is detected and solved is: Let A 
contain AcmeCorp incorporated_in Maryland 
and incorporated _ in arity 1; let B contain 
AcmeCorp incorporated_in USA. OM detects an 
(apparent) inconsistency between Maryland and 
USA (two different concepts), which is solved 
by conf because Maryland is part of USA, 
conf(Maryland, USA)=0. Then, OM stores in 
C AcmeCorp incorporated_in Maryland (but 
it does not store in C AcmeCorp incorporated_in 
USA). Nevertheless, when trying to merge A with 
D which contains AcmeCorp incorporated_in 
France, OM will detect a contradiction, since 
the confusion between Maryland and France is 
large, and incorporated_in is single-valued. Un-
able to solve this contradiction, OM keeps in C 
the knowledge coming from A.20 

h.	 Expunging redundant values. If A contains 
George_Washington visited (Paris, Africa, Ma-
drid, Maryland) and B contains George_Wash-
ington visited (France, Morocco, Spain, USA, 
Argentina), then OM uses confusion to prune 
C to contain George_Washington visited (Paris, 
Morocco, Madrid, Maryland, Argentina). Warn-
ing: In the presence of symbolic values (places 
visited, in the example) at different hierarchy 
levels, selecting the most specific values may 
work, but there are other cases where the more 
general values are preferred. More knowledge 
is needed for OM to always solve correctly this 

case. See the section on “Suggestions for Further 
Work.”

i.	 Cuevas-Rasgado (2006) provides other heuris-
tics and rules that fortify OM.

Commercial Areas Ready to Exploit 
OM

OM enables the automatic development of larger and 
better ontologies. Also, with OM it is possible (but 
see footnote 7) to generate on-demand ontologies, 
tailored to the application needs.

Ontology merging is at its infancy (see the section 
on “Suggestions for Further Work”). Its promise is the 
automatic acquisition of relevant knowledge. How can 
this help a business?

•	 Discovery of new markets. A glass factory in 
Indonesia may discover that their small glasses 
could be used in Mexico to drink tequila.

•	 Market trends. How many newspaper job ads 
demand a manufacturing engineer? How many 
require persons speaking Cantonese? (now done 
through text mining). 

•	 Business intelligence. Mexico has large oil 
deposits in semifractured strata. How are other 
nations exploiting similar beds? (now done 
through word search of documents). 

•	 Product improvement. Japanese consumers pay 
dearly for a fruit similar to a prickly pear, but 
without seeds. Can Jalisco adapt its prickly pears 
to this market?

•	 Electronic commerce. 
•	 Public relations monitoring. What is New York-

ers’ perception about the occupation of Irak? 
And Australian citizens’ perception? (now done 
through polls).

Additional areas where OM can be productively 
used are: 18

Semantic Web: Crawlers need to understand19 large 
amounts of Web-available information. Central 
to this understanding is the assimilation of new 
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information in ways consistent with already 
acquired knowledge. Use: to answer non-trivial 
questions (see “Suggestions for Further Work”) 
needing multiple Web sources.

Electronic Commerce: Agent A can enrich its ontology 
(in order to acquire synonyms for its products, 
to facilitate finding new customers, suppliers 
or uses of its products) by joining its ontology 
with suitable ontologies B, C, ... Such “enriched 
agent” will understand better the queries and 
needs from other agents (or human beings) that 
may acquire products from A.

Virtual learning: Virtual book A in International 
Finance can merge its ontology with the ontol-

ogy of another virtual book dealing with the 
same or near-by topic. The enriched ontology 
will be better suited for students learning from 
A. Also, A can join its ontology with a “pre-
decessor” ontology from other book dealing 
with Economics. This helps students to refresh 
previous concepts. 

Using OM: Examples

Figures 5 and 6 show only relevant parts of large 
ontologies A, B and C.

Figure 4. Solving contradictions. conf(river, Hidrology)= 0 whereas conf(Hidrology, river)= 0.2 
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Example 1: Ontology Merging in 
spite of the Generality or Specificity 
of Contents 

Here we merge two ontologies of businesses that sell 
tools for handcrafts.

Ontology A describes hammer with two sons: 
carpenter hammer and blacksmith hammer 
(Figure 5). Ontology B (Figure 6) contains a more 
general description of hammer. During the merging 

of A and B, OM detects that COM matches hammer 
in A, and its two sons, with the (unique) hammer in 
B (Figure 6).

Figure 7 presents concepts of A that have matched 
with those of B and vice versa. A’s hammer has 
matched with B’s hammer. When OM complements 
the words and properties of hammer, it copies the 
brothers of B’s hammer to C, but before that copying, 
it searches each of these brothers in A.

Figure 5. Ontology A has deeper knowledge about hammer than ontology B

Figure 6. Ontology B has concepts screw and saw, inexistent in A
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Figure 7. Mapping between A and B. Hammer, carpenter hammer, blacksmith hammer and nail from A match with 
hammer in B (dotted lines). Heavy lines identify matches from B into A

Figure 8. Result C for example 1. Here, C is symmetric: A ∪ B = B ∪ A. In the presence of contradictions, such 
symmetry may not hold (Cuevas, 2006; footnote 20)
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For screw in B, even when COM answers hammer 
(from A) as the most similar concept in A (because 
the parents of screw and hammer coincide), OM 
compares their names: “hammer” and “screw”. Being 
different, it considers screw as a new son of tool in 
A, and it copies screw into the merged result as a new 
node. The same happens to concept saw in B, and to 
carpenter hammer, blacksmith hammer, and 
nail in A (which are found by COM to be similar to 
hammer in B): they all go to C, Figure 8.

Example 2: Merging Ontologies with 
Mutually Inconsistent Knowledge 

Differences in A and B’s knowledge arise from rep-
etitions, reference to the same facts through diverse 
words, different level of details, type of description, and 
contradictions. For instance, B contains: veteran John 
Nash Sr. was born in Bluefield, while A contains: 
mathematician John Forbes Nash was born in West 
Virginia. Both ontologies duplicate some informa-
tion (Nash’s birthplace), different expressions (veteran 
/ mathematician), different level of details (Bluefield 
/ West Virginia), and contradictions (John Nash Sr. 
/ John Forbes Nash). A person will have in her mind 
a consistent combination of information: John Nash 
Sr. and John Forbes Nash are not the same person, or 
perhaps they are the same. If she knows them she may 
deduce that one is the son of the other. We solve these 
problems everyday via common sense knowledge and 
previously acquired information. This is not so easy for 
computers, since they lack everyday’s knowledge and 
usually they don’t use, as OM, a previous knowledge 
base (See “Knowledge Support for OM”). Also, OM 
deals with inconsistency by measuring (step 2.a.iii of 
its algorithm) conf(Bluefield, West Virginia). 20

Example 3: Joining Partitions, 
Synonym Identification 

Numbers in Figure 9 match those below, for easy 
identification.

1.	 Copying new partitions. B has one partition: 
printing technology. A has two partitions: 
types and methods of image creation. 
Thus, printing technology is added to C 
(thin lines in Figure 9). 

2.	 Copying concepts. procedure in B is copied to C, 
because it is not found in A. Its ascendant (not 
shown in Figure 9) is also copied to C.

3.	 Change into a (full) concept. Synonym identifica-
tion. Adding more semantics. Relation method in 
A is copied to C; then, procedure in B is identified 
as a synonym of method, so method in C changes 
to procedure. In addition, procedure is a concept 
in B (it was just a phrase in A)9, so it becomes 
a full concept in C. Finally, new semantics is 
added to procedure in C by adding to its defini-
tion print striking to the paper with 
small pieces from B.

Example 4: Numbers in Figure 10 
Match Those Below

4.	 Removing redundant relations. In A, liquid 
inkjet printer ⊂ printer, whereas in 
B liquid inkjet printer ⊂ non-im-
pact printer ⊂ printer. Adding both to 
C would make liquid inkjet printer to 
have two ascendants: printer and non-im-
pact printer. OM detects the redundancy 
liquid inkjet printer ⊂ printer 
and expunges it from C, to keep only liquid 
inkjet printer ⊂ non-impact printer 
⊂ printer. 

5.	 Comparing relations (Figure 10). The relations 
method in B and its method is in A are considered 
to be the same, because connectors and, or, its, 
and so forth, are ignored (see the section on 
“Knowledge Support for OM”).

Example 5: Homonyms 

Concepts printer in A (Figure 11) and in B have the 
same syntax, but different semantics. OM finds them 
different, as explained in Example 1.
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Figure 9. Relations method in A and procedure in B are synonyms, thus both of their definitions are added to node 
procedure in C
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Figure 10. Relations method in A and its method is in B are the same, so they are merged in a single relation 
method in C (label 5)

Figure 11. Concepts printer in A and in B are found not to be the same, they both go to C (not shown) as two dif-
ferent concepts with the same name
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Example 6: Promotion of Subsets to 
Partitions 

Figures 12 and 13. In A, Etnolinguistic group of Oaxaca 
has subsets zoque set, ixcateco set, huave set and mix-
teco set, whereas in B, the same concept Etnolinguistic 
group of Oaxaca has a partition with the same elements 
that A has a subsets. Therefore, OM adds to C the 
partition from B. (A small error: OM fails to remove 
those elements as subsets from Etnolinguistic group of 
Oaxaca in C).

Example 7: Unsuccessful Promotion 
of Subset to Partition 

It is not always possible to organize subsets into parti-
tions. Figure 14 shows concept stem in A matching 
with stem in B. Thus, the partition Color belonging 
to stem in B is considered for copying to C. This 
partition has two elements: Gray and Green, which 
are searched in A. OM finds that Gray and Green 
are not descendants of stem in A.21 OM finds them 
in Color in A (not shown in Figure 14), but they have 

Figure 12. The partition Etnolinguistic in B is not in A, but before adding it to C, OM verifies that each of its ele-
ments (zoque set, ixcateco set…) are brothers in A and that no additional brother appears in A. These elements 
are all descendants of Etnolinguistic group of Oaxaca (thus, they are brothers) and no additional brother appears 
in A. Therefore, the partition Etnolinguistic from B is copied to concept Etnolinguistic group of Oaxaca in the 
resulting ontology C. Sizes of complete ontologies: A = 234 nodes; B = 117
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Figure 13. The result C shows the partition Etnolinguistic added to the concept Etnolinguistic group of Oaxaca

Figure 14. B has a partition Color, while A does not have it 

two additional brothers: white and red. Thus, they 
are not added to C (Figure 15) as a partition of Color, 
but as a partition of stem. 

Additional Examples for 
Real-World Cases

OM has been applied by Cuevas-Rasgado (2006) to 
ontologies derived from Web documents (see their 
URLs in the references), including: 
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•	 Geographic zones: two different documents 
about Oaxaca

•	 Animals and flowers: two description of turtles, 
two of poppies

•	 Biographies: two about Benito Juárez, two about 
Newton

•	 Description of tools and products
•	 Novels: portions of 100 Years of Loneliness (two 

different texts)

From these documents, ontologies were manually 
written in OM notation, obtaining two ontologies for 

each animal, flower, and so forth. Each pair of ontolo-
gies was merged (automatically) by OM. Validation of 
results (more at the section entitled “Discussion”) has 
been made by comparing against a person’s results, 
yielding Table 1.

Conclusion

As the world becomes a global village, businesses 
that do not adopt tools for automatic harvesting of 
knowledge disseminated through the Web will be at 

Figure 15. The resulting ontology C for example 7. Stem is partitioned into Green (that is, green stem) and Gray 
(that is, gray stem) while color still has as subsets gray, green, white and red 
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a disadvantage. Unfortunately, until now there were 
only tools that partially met this need. The emergence 
of OM provides new support.

OM is an automatic, robust algorithm that fuses the 
knowledge from two ontologies into a third one, solving 
some inconsistencies and avoiding redundancies.

The examples shown, as well as others (Cuevas-
Rasgado, 2006), illustrate the power of OM: in spite 
of joining very general or very specific ontologies, it 
generally does a good job. This is because OM not 
only compares words, but it also takes into account 
the semantics or context of each node in the source 

Table 1. Performance of OM in some real-world examples
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ontologies for copying or modifying new properties 
and concepts into the resulting ontology. It also uses 
its base knowledge (see the section on “Knowledge 
Support for OM”).

Discussion

Syntactic vs. semantic analysis. OM builds data struc-
tures (in OM notation) from data structures, and thus 
uses limited knowledge (its in-built knowledge, plus 
the knowledge in A, plus the knowledge in B) and it 
exploits “only” syntactic facts. OM does not pretend 
to find “the truth”22 among two inconsistent relations, 
but as more knowledge (more syntactic facts) come 
into its built-in knowledge, it will do a better job. In 
fact, when compared with the fusion done by a person 
imbedded with semantic knowledge, OM already does 
a reasonable job (Table 1), despite its “limited method-
ology” and its use of “only syntactic analysis.”

OM is automatic. Human intervention takes place 
outside OM (see the section on “Additional Examples 
for Real-World Cases”). OM will produce consistent 
(no redundancies, no contradictions) and complete 
(no concepts missing in the fusion) ontologies if it 
were to achieve 100% accuracy (that is, the accuracy 
of a person that does the merging by hand). This is 
the goal of OM. How well does OM achieve its goal? 
About 96% (see Table 1). The section on “Suggestions 
for Further Work” explain how to improve further its 
performance.

Verification of Results

How can we be sure that OM (or some other merger 
tool) did a good job? We check (as in Table 1) for 
wrong, missing, misplaced, or additional (but wrong) 
relations and nodes in OM’s result, against the result 
manually obtained by a person. At times, the person 
uses previous knowledge to build nodes or relations in 
the result that are impossible to be added by OM with 
the information available to it. The person may add Dog 
eats meat, among nodes Dog and meat, but neither 

A nor B say this. We do not count these as mistakes, 
but we mark them as “areas where more knowledge 
should produce this result.” Another verification 
method could use the editor-reasoner when built, in 
order to pose questions to the resulting ontology, and 
check its answers against the answers from a person. 
These are subjective methods, but probably there could 
never be (for this purpose) an objective method, where 
a person’s opinion is absent. 23

Real World Examples and 
Challenges

Until now, ontology merging was a machine-aided 
activity, so few real world problems were tackled. 
OM is the first automated tool for ontology merging, 
but it has not yet tackled commercially interesting 
problems. The examples in the chapter come from 
ontologies obtained from documents found in the Web. 
But the largest ontology produced by OM (that for a 
portion of One Hundred Years of Loneliness, Table 
1) has only 561 concepts (420 relations + 141 nodes). 
Larger experiments need to be carried out.

Issues, problems and trends are touched upon in 
that section.

Suggestions for Further 
Work

•	 Commercial applications appearing in the sec-
tion on “Commercial Areas Ready to Exploit 
OM.”

•	 As more knowledge is fused by OM, it could be 
kept and used as its built-in knowledge (explained 
in “Knowledge Support for OM”), to improve 
its accuracy. 

•	 OM could resort to external knowledge 
sources—some are mentioned in “Knowledge 
Support for OM.” These will help to eradicate 
some of the arbitrary decisions that current OM 
makes:
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o	 Uncertain handling of Case C, footnote 
16

o	 Preferring its own knowledge, footnote 
20

o	 Expunging redundant values, contribution 
h

o	 Mistake in Example 6
•	 Another improvement may come from adding 

more similarity measures, see “Confusion.”

Needed extensions to OM are:

•	 Handling of time. When young, Juárez was 
a law student; later he became Governor of 
Oaxaca, then President of the Supreme Court, 
then President of Mexico; at that time he fought 
against Emperor Maximiliam of Habsburg…

•	 Representing and merging disjunctions. Ann 
bought (a candy or an ice cream).

•	 How to represent (and merge) beliefs.
•	 How to represent conditionals and in general 

logic restrictions in a way that OM can analyze, 
check (for mutual inconsistency, say), improve, 
and change them. They should not be opaque to 
OM machinery.

Tools external to OM that will extend OM’s appli-
cability:

•	 A parser that transforms a document into a data 
structure using OM notation. A difficult task 
(footnote 7). 

•	 A deductive machinery (a reasoner) that answers 
complex questions posed to the ontology perhaps 
as graphs, to avoid using a natural language 
interface.

•	 Those in footnote 7.

With these, the goal of attaining a large knowledge 
ontology (see the section on “Increased Yield Through 
Better Processing the Web Resources”), ready to an-
swer difficult questions, could be achieved—building 
it incrementally by a tool, not by hand. Let us call this 
extended tool OM*. And what could be its use? Well, 

we could add it to our system software, perhaps as a 
part of the operating system. In the same manner as 
current word processors check for spelling and gram-
mar, OM* would check documents or data bases for 
factual or semantic mistakes (assertions not agreeing 
with OM*’s knowledge), tagging for instance sentences 
or rows in a data base such as “Abraham Lincoln was 
born in Japan,” “The applicant’s age is 27, and he has 
been working in his previous job for 25 years,” or 
“the shoe has hepatitis.” In addition to common sense 
knowledge, OM* will provide real world knowledge 
to the computer. This sounds like exaggerations and 
wild thoughts, so we shall stop here and concentrate 
instead in the construction of missing parts of OM*.
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Endnotes

1	 An easy task for a person who uses context and 
previous knowledge.

2	 Other important problems (question-answering, 
reasoning, the handling of time, how to represent 
beliefs, and so forth; see “Suggestions for Further 
Work”) are outside the scope of this chapter.

3	  OM forges ahead and does not fall into loops.
4	 Without contradictions.
5	 The result contains all available knowledge from 

the sources, avoiding redundancies.
6	 Without user intervention.

7	 A Ph.D. Thesis in progress by Paola Neri seeks 
to make such translation.

8	 Some representations are even more restrictive: an 
ontology has to be a tree. In these, a concept could 
not have two parents: Mexico could not be both a 
nation and an emerging market.

9	 A relation may be a (full) concept or just a name, 
a label, a “shallow” relation. Same applies to 
concepts.

10	 Another example: the relation to light (that is, to 
illuminate) may also be a concept, if one wishes 
to add more properties to this action. A differ-
ent concept that can also be represented is light 
(that is, an electromagnetic radiation). OM does 
not consider them equivalent, even if somebody 
gave them the same name. OM has machinery 
to identify homonyms (contribution e.2).

11	 Ontology C is incrementally constructed, start-
ing from ontology A (step 1). In step 2, OM first 
adds to C nodes in a “superficial” manner (only 
the label, description, and implicit relations are 
copied), later in that step 2 these nodes will be 
completed and “deeply” copied. See footnote 
12.

12	 Deep copying. OM finishes copying a node 
already superficially copied, adding to it its 
explicit relations. These new relations link to 
other concepts, which could already be in C. If 
they are not, they are now superficially copied, 
and later they, in turn, will be deeply copied.

13	 Ontology C is searched depth-first. A branch of 
the tree is traveled until the deepest descendant 
is reached, before OM considers another branch. 
Since the OM notation uses trees, OM finds easy 
to do these travels.

14	 For instance, in A we find impact printer 
method uses force… (Figure 9) and in B 
we find impact printer procedure uses 
print striking to the paper and CC 
= impact printer in A has a most similar 
concept cms = impact printer in B, and 
method and procedure are found by OM to be 
synonyms. Then all the words in the definition 
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of procedure in B are copied into the definition 
of method in C (Figure 9). 

15	 Or grandparent, or great-grand parent.
16	 This may be a mistake. More information is 

needed if OM were always to make the right 
decision. More at “Suggestions for Further 
Work.”

17	 In C= A ∪ B, OM assumes A, B, C to be self-
consistent. But mutual inconsistency can arise 
when joining A and B.

18	 Progress will be slow until better tools appear 
(like OM*) and businesses become aware of 
them.

19	 To understand x means: to process, exploit, make 
intelligent inferences about x. Pragmatically, a 
program understands some text, information, or 

situation when such program can productively 
use it to advance in its goals and objectives.

20	 As last resort, if B’s new knowledge is incon-
sistent with A’s knowledge, A refuses to acquire 
this new knowledge.

21	 If Gray and Green were the only descendants 
of its ascendant (Color), the partition would be 
added to Color.

22	 How can a program that diagnoses EKG anoma-
lies be checked: (1) by comparing its results 
against experts’ diagnosis (subjective method), 
and (2) by checking reality, for example, an au-
topsy of the person will show his heart’s ailments 
(objective method). But the purpose of OM is 
not to find out what is true in the real world; its 
purpose is to build a consistent C from A, B and 
its previous knowledge.


