
 383

Chapter XXII
A Language and Algorithm
for Automatic Merging of

Ontologies
Alma-Delia Cuevas-Rasgado

Instituto Politécnico Nacional, Mexico

Adolfo Guzman-Arenas
Instituto Politécnico Nacional, Mexico

Copyright © 2008, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Abstract

Ontologies are becoming important repositories of information useful for business transactions and operations
since they are amenable to knowledge processing using artificial intelligence techniques. They offer the potential
of amassing large contents of relevant information, but until now the fusion or merging of ontologies, needed
for knowledge buildup and its exploitation by machine, was done manually or through computer-aided ontology
editors. Thus, attaining large ontologies was expensive and slow. This chapter offers a new, automatic method of
joining two ontologies to obtain a third one. The method works well in spite of inconsistencies, redundancies, and
different granularity of information.

Introduction

Computers are no longer isolated devices but they are
important to the world-wide network that interchanges
knowledge for business transactions. Nowadays, using
the Internet to get data, information, and knowledge
is a business need.

Most of the important information resources that
businessmen require are available through the Internet.
Here, machines face the problem of heterogeneous
sources. The computer has a hard time finding whether
two data representations refer to the same object (a
bill can be a bank tender or an invoice)1 because there
are no suitable standards in knowledge representa-

384

A Language and Algorithm for Automatic Merging of Ontologies

tion. This chapter addresses this need of businesses
and academia.

When businessmen demand answers that require
access to several Internet data sources, they have to
manually or mentally merge the acquired information
in a reasonable way. It would be nice if a computer
program helped in this very useful but tedious task.
This chapter solves this problem, which has important
implications (see the section on “Commercial Areas
Ready to Exploit OM”).

The Problem to Solve2

To merge two data sources in such a way that its com-
mon knowledge could be represented and more easily
used in further tasks.

Computers represent the information in files,
databases, text documents, lists, and so forth. Com-
puter merging of information in databases or in
semistructured data, has its own challenges, and will
not be addressed here. Merging information stored
in documents is done manually, since the computer
does not “understand” what a document says. If the
information is stored in spreadsheets, merging can be
done by a computer-aided person who understands the
contents of different cells and their units. Information
can also be stored in ontologies and thus be subject to
merging. So far, merging of ontologies has been done
manually (see the section on “Ontology Merging”)
using an ontology editor.

Ontology

An ontology is a data structure where information
is stored as nodes (representing concepts such as
hammer, printer, document, appearing in this
chapter in Courier font) and relations (represent-
ing restrictions among nodes, such as cuts, transcribes,
or hair color, appearing in this chapter in Arial Narrow
font, as in (hammer cuts wood), (printer transcribes
document), Figure 9. Usually, the information it
stores is “high level” and it is known as knowledge.
For working purposes, we further restrict this defi-

nition to those data structures compliant with OM
notation (quo vide).

Ontologies are useful when arbitrary relations need
to be represented; one has more freedom to represent
different types of concepts.

Current notations to represent ontologies are
DAML+OIL (Connoly et al., 2001), RDF (Manola
& Miller, 2004) and OWL (Bechnofer et al., 2004).
These languages are a notable accomplishment, but
some lack certain features:

•	 A relation can not be a concept. For instance,
if color is a relation, it is difficult to relate color
to other concepts (such as shape) by using other
relations.

•	 Partitions (subsets with additional properties, see
the section on “Contributions of OM Notation”)
can not be represented.

This chapter offers the OM notation to represent
ontologies that solves above problems and better
represents the semantics involved.

Ontology Merging

Realizing the importance of the problem to solve, dif-
ferent scientists have approached it. Previous works
incudes CYC (Lenat & Guha, 1989), whose goal was to
represent common sense knowledge in a gigantic hand-
built ontology. CYC does not do merging. Prompt (Noy
& Musen, 2000), Chimaera (McGuinness, Fikes, Rice,
& Wilder, 2000), OntoMerge (Stumme & Maedche,
2002) and ISI (Loom) rely on the user to solve the
most important problems found in the process, and
are considered non automatic methods. FCA-Merge
(Dou, McDermott, & Qi, 2002) and IF-Map (Kalfoglou
& Schorlemmer, 2002) require consistent ontologies
that are expressed in a formal notation employed in
Formal Concept Analysis (Ganter, Stumme, & Wille,
2005) which limits their use. Hcone (Kotis, Vouros, &
Stergiou, 2006) uses WordNet and a formal approach
to ontology merging. Cuevas-Rasgado (2006) mentions
additional previous works.

 385

A Language and Algorithm for Automatic Merging of Ontologies

Our solution to the above problem is the OM
algorithm, which performs the fusion in a robust3
consistent,4 complete,5 and automatic6 manner. When
compared with fusion done by hand and with current
computer-assisted methods, OM does “very good”
(≈ 96%, Table 1), but manual methods may achieve
100% accuracy, depending on the user or expert that
makes the correct choices, solves contradictions,
and eliminates redundancies. OM also fused some
ontologies expressed in current ontology languages,
hand-translated to OM notation. The results are good
(100%, Table 1) but care should be exercised: the on-
tologies merged contain only shallow information,9
most are merely a taxonomy.

The section on “OM Notation” explains the OM
notation, and the section on “OM Algorithm for Au-
tomatic Merging of Ontologies” the OM algorithm.
The chapter concludes with examples.

Increased Yield Through Better
Processing the Web Resources

This chapter describes important contributions to-
wards the task of obtaining more benefits from Web
resources: (1) the OM notation, (2) the OM algorithm,
which automatically merges two ontologies, (3) a map-
ping algorithm among ontologies, called COM (see the
section on “The Comparison Function COM”), that
finds similarity among concepts belonging to differ-
ent ontologies, and (4) the use and exploitation of a
theory that measures the confusion (see the section
on “Confusion”) in using a symbolic value instead of
another (the intended value). This theory solves some
inconsistencies arising during the union of ontologies
and lets the process proceed further.

In addition to being useful for businesses, ontol-
ogy merging is an Artificial Intelligence (AI) tool that
could harvest the knowledge (in a given area, say, oil
production) available in the Web from documents
in English and other natural languages, and (if they
were translated to our ontology format)7 automatically
produce a new ontology that captures the (total, joint)
knowledge available in all these documents. How? By
joining consecutively ontology after ontology from

those documents. See the section on “Suggestions for
Further Work” for uses of this joint knowledge.

Issues, Problems, and Trends

One of the hard problems keeping AI people busy is
how to provide the computer with a “deep” or “seman-
tic” understanding of the information it is processing.
In order to give it, for instance, the ability to answer
complex, nontrivial queries about the information it
has. One way is to construct a large ontology, under-
standable (processable) by machine, where mechani-
cal reasoning could be achieved. Initially, a 10-year
project (Lenat & Guha, 1989) was going to build by
hand the common sense ontology. As time passed,
numerous groups hand-crafted their own ontologies.
People wondered how to map a concept from one
of these ontologies to the closest concept in another
ontology, and Guzman and Olivares (2004) were the
first to solve this. OM uses and has improved their
COM algorithm. See the section on “The Comparison
Function COM”. Inspired in COM, Cuevas-Rasgado
(2006) reflected that automatic ontology merging was
possible and desirable. This chapter presents her work.
Until now, merging of ontologies was accomplished
with the help of a user that resolved differences and
made important decisions.

The trend is now clear: keep improving the merging
algorithms, giving them access to “semantic sources
of knowledge” (see the section, “Discussion”), and to
knowledge previously processed (see the section on
“Suggestions for Further Work”), in order to continue
adding pieces of knowledge to growing ontology, which
could be one day “the ontology of knowledge,” much as
Wikipedia is now the encyclopedia of knowledge.

Knowledge Support for OM

OM uses some built-in knowledge resources, which
help to detect contradictions, find synonyms, and the
like. These are:

1.	 Stop words (in, the, for, this, those, it, and, or…)
are ignored form word phrases;

386

A Language and Algorithm for Automatic Merging of Ontologies

2.	 It takes into account words that change the
meaning of a relation (without, except…);

3.	 Hierarchies (simplified ontologies, merely trees
of concepts where each node is a concept or, if
it is a set, its descendants must form a partition
of it) represent a taxonomy of related terms, and
are used to measure confusion (See the section
on “Confusion”), and later can be used for
synonym detection. Guzman and Levachkine
(2004) explain how to build these hierarchies.

Future additions include using a stemmer, to find
the root of words (love, lover, lovingly…), reliance on
linguistic resources such as WordNet, use of a diction-
ary to find synonyms, homonyms, and so forth. The
result of previous fusions could also be part of the
built-in knowledge base for OM.

OM Notation

OM Notation represents ontologies through a structural
design with XML-like labels, identifying the concepts
and their relations. See Figure 1.

The label of each concept (such as thing) comes
after <concept>; the language of the concept’s defini-
tion (such as English) goes between <language> and
</language>; the definition of the concept (such as con-
crete_object, physical_object) goes between <word>
and </word>; the relations of the concept (such as eats)
go between <relation> and </relation>. The descrip-
tion of a concept ends in </concept>. Nested concepts
(such as physical_object within thing) indicate that
physical_object is subordinate (or hyponym) of thing,
the precise meaning of this subordination is indicated
by <subset> thing </subset> (physical_object ⊂ thing)

Figure 1. Representation of an ontology in OM notation

 387

A Language and Algorithm for Automatic Merging of Ontologies

The relations expressed by nesting are called implicit
relations. Currently, they are member of, part of, subset
(represented in this chapter as ⊂), and part* (“one of
my domain elements is part of one of my codomain
elements,” as in country part* continent). The other
relations, such as eats, are called explicit. These are
known elsewhere as properties or attributes of the
concept. Cuevas-Resgado (2006) gives a complete
description of the OM notation

In OM Notation, a relation can be n-ary; a relation
relates nodes (concepts); a relation can be a concept
(a node), too. For example, the Zebra concept has a
Color relation that connects to two elements White
and Black. Relations can be considered as proper-
ties or characteristics of the node or concept where
they are defined. Nested concepts imply subordinate
relations (see the caption of Figure 1).

Contributions of OM Notation

Most important are:

a.	 Ability to represent partitions. A partition of a
set is a collection of subsets such that any two of
them are mutually exclusive, and all are collec-
tively exhaustive. OM can represent partitions,
while current ontology languages (DAML, RDF,
OWL) can not. For instance, not only male _
person and female _ person are subsets
of person, they are a partition of person.
Alternatively, the gender of a person will tell
us to which of the partitions male _ person
or female _ person the person belongs.

b.	 A concept also can be a relation. Often, ontologies
are represented as a graph O = (C, R) consist-
ing of two disjoint sets: C (nodes, or concepts)
and R (edges, or relations).8 Two disadvantages
of this visually oriented approach are: all the
relations are binary and a concept can not be a
relation. In OM, it is possible9 to add relations
to a relation, to provide more semantics. For
example, one can say Mary Washington
mother of George Washington to indicate
that Mary is Washington’s mother, but mother_of

can be a concept that contains more information,
for instance, related to child_of by the relation
inverse.10

c.	 OM’s graphs are hypergraphs, since relations
are n-ary.

OM Algorithm for Automatic
Merging of Ontologies

This algorithm fuses two ontologies A and B, building a
third ontology C = A ∪ B containing the information in
A, plus the information in B not contained in A, without
repetitions (redundancies) or contradictions.

The information in B not contained in A can be:
(1) new nodes, for instance B contains information
about dinosaurs, which A lacks; (2) new relations,
for instance, B knows that Gabriel García Márquez
wrote The Colonel has Nobody to write to him, in ad-
dition to One Hundred Years of Loneliness, already
known to A; (3) improved or more precise relations,
for instance A knows that Abraham Lincoln was born
in United States, while B knows that Lincoln was
born in Kentucky; (4) new synonyms in B for current
nodes in A enrich A; and (5) relations can be better
defined in B, for instance B has a better description
of lend money to than A. Thus, the addition of B to A
is “carefully done” by OM.

OM proceeds and Cuevas-Rasgado (2006) gives
more details:

1.	 C ← A. Ontology A is copied into C.
2.	 Search in B each concept CC of C.11 This

step describes the deep copy of a concept.12 At
the start of the search, concept CC is the root
of ontology C. Then, CC will be each of the
descendants of CC, and so on, so that each of
the nodes of ontology C will be visited by CC.13
For each CC, COM looks for the concept that
best resembles CC in B, such concept is called
the most similar concept in B to CC, or cms. Two
cases exist:
a.	 If CC has a most similar concept

cms in B, then:

388

A Language and Algorithm for Automatic Merging of Ontologies

i.		 Relations that are synonyms (see
the section on “Knowledge Sup-
port for OM”) are enriched. To
enrich a concept CC is to add to its
definition the new words that are
in the definition of cms, when CC
and cms are synonyms. 14

ii.		 New relations (including parti-
tions) that cms has in B, are added
to CC.
1.	 For each added relation,

concepts related by that rela-
tion and not present in C are
copied to C. Example: if cms
color red and concept red
is not in C, it is copied to C,
together with its ascendants
who are not present in C.

	 In this step we copy partitions
of CC, if they exist, since they
are relations, too.

iii.		 Inconsistencies between the rela-
tions of CC and those of cms are
detected.
1.	 If it is possible, by using

confusion (see the section
on “Confusion”), to resolve
the inconsistency, the correct
concepts are added to C. For
instance, in Contribution g,
ontology A says AcmeCorp
incorporated_in Maryland
and B says AcmeCorp
incorporated_in USA. Since in-
corporated_in can only have
a single value, a contradiction
is detected and solved, thus
AcmeCorp incorporated_in
Maryland is added to CC.

2.	 When the inconsistency can
not be solved, OM rejects the
contradicting information in
B, and CC keeps the original
relation coming from A.21

iv.		 Concepts that are descendants of
cms not present in C are copied to
C, in a superficial manner.11

b.	 CC can not find in B a good resem-
blance. That is, B contains no object cms
resembling CC.
i.		 Take the next descendant of CC,

which will become the new CC.
ii.		 Go to step 2 until all the nodes of

C are visited (including the new
nodes that were being superficially
added by OM).

The Comparison Function COM

Four cases are used to find cms = COM(CC, B), the
most similar concept in ontology B to the concept CC
in ontology C. Guzman and Olivares (2004) explain
COM in detail.

CASE A. A concept CB having a definition similar to
the definition of CC is found in B, and the parento
of CB has a definition matching the definition
of the parent15 of CC. In this case, COM returns
cms = CB. See figure 2.

CASE B. CC does not find a similar concept in B
matching CC, but the parent (let us call it PC) of
CC finds a match with a node PB in B. Then, we
search for a son (or grandson, or nephew) of PB
having most of its relations match (using COM)
with those of CC. If such candidate has also de-
scendants, do they coincide with the descendants
of CC? The best candidate becomes cms. If no
candidate is good enough, COM returns cms =
“son of PB” (meaning that CC must be some son
of node PB, unknown to B). In this case, OM
will try to merge PB with PC.

CASE C. CC finds a match CB in B, but the parents PC
and PB (of CC and CB) do not match. COM verifies
if most of the relations of CC correspond to those
in the candidate, and if most of the descendants
of CC match those of the candidate CB. That being
the case, it returns the CB with the best match as

 389

A Language and Algorithm for Automatic Merging of Ontologies

cms. If only some properties of CC and CB match,
COM returns cms = “probably CB.” OM treats
this (arbitrarily) as a match between CC and CB.16
If few or no properties of any candidate match,
COM returns “no match” (Figure 3).

CASE D. CC does not find a match in B, and neither its
parent PC does. COM returns “no match.”

Confusion

I ask for a European car, and I get a German car. Is
there an error? Now, I ask for a German car, and a
European car comes. Can we measure this error? Can
we systematize or organize these values? Hierarchies
of symbolic values allow measuring the similar-
ity between these values, and the error when one is
used instead of another (the intended or real value).
This measurement is accomplished by the theory of
confusion (Guzman & Levachkine, 2004) and the
function conf, which is used by OM to solve some
inconsistencies.

Confusion, contradiction, or inconsistency arise
when a concept in A has a relation that is incompatible,
contradicts or negates other relation of the same concept
in B. For instance, Earth in A has shape flat; and in
B Earth has the relation shape round. Contradiction
arises from two relations: in our example, the shapes
are not the same, are inconsistent since shape can only
have a single value.

Because OM must copy concepts keeping the
semantics of the sources in the result, and both seman-
tics are incompatible, a contradiction is detected. It is
not possible to keep both meanings because they are
inconsistent.17 To solve some of these inconsistencies,
OM uses the theory of confusion.

Function CONF(r, s), called the absolute confusion,
computes the confusion that occurs when object r is
used instead of object s, as follows:

CONF(r, r) = CONF(r, s) = 0 when s is some ascen-
dant of r;

CONF(r, s) = 1 + CONF(r, father_of(s)) otherwise.

CONF is the number of descending links when one
travels from r (the used value) to s (the intended or real
value), in the hierarchy to which r and s belong.

Absolute confusion CONF returns an integer be-
tween 0 and h, where h is the height of the hierarchy
(Figure 4). CONF is granularity-dependant, since its
value changes merely by adding nodes between the
root of the hierarchy and s. To make it insensitive to
this, we normalize it by dividing into h, the height of
the hierarchy, thus:

Definition.
	 conf(r, s), the confusion when using r instead

of s, is:
	 conf(r, s) = CONF(r, s) / h
conf returns a number between 0 and 1.
Example: conf(Hydrology, river) = 0.2 (Figure 4).

OM uses conf, whereas Guzman and Levachkine
(2004) describe CONF. Confusion is not a distance.
In general, conf (a, b) ≠ conf(b, a). conf(r, s) is do-
main-dependant, as reflected by the hierarchy used
to compute it.

Besides confusion, there are many forms to mea-
sure similarity or likeness between qualitative values
r and s. For instance, seeing how far apart in Wordnet
(wordnet.princeton.edu/) are the synsets where r and s
lie, or comparing their definitions (or glosses) in a
dictionary. OM uses confusion due to its asymmetry,
but it could easily adapt or add some other similarity
functions. A complete discussion of similarity is in
Guzman and Levachkine (2004).

Contributions of the OM (Ontology
Merging) Algorithm:

a.	 It is totally automatic, requiring no human
intervention.

b.	 It handles partitions as well as subsets (explained
in “Contributions of OM Notation”).

c.	 It handles concepts in an ontology that are
described “shallowly” by just a word, a word
phrase or a set of them (see footnote 9).

390

A Language and Algorithm for Automatic Merging of Ontologies

d.	 Relations among nodes can also be concepts, as
explained in “Contributions of OM Notation.”

e.	 With the help of COM, OM takes into ac-
count:
1.	 Synonyms.. Example: If A contains

boat (“boat”, “ship”) ⊂ vessel, and
B contains dinghy (“skipper”, “boat”)
⊂ vessel, then C will contain boat
(“boat”, “ship”, “skipper”) ⊂ vessel.
Other example: In figure 2, method in A
matches procedure in B and the parent
(of method) technique in A matches
the parent of procedure in B. Thus,
this is case A of COM. Other example is
found in part c of example 3; see Figure
9.

2.	 Homonyms. If A contains fly ⊂ insect
⊂ animal and B contains fly ⊂ navi-
gate, then C will contain fly ⊂ insect
⊂ animal and fly ⊂ navigate, that is,
OM recognizes (Case C of COM) two dif-
ferent concepts with the same name. An-
other example: if A contains the concept
printer ⊂ company and B contains
printer ⊂ computer peripheral,
then C will contain both: printer ⊂

company and printer ⊂ computer
peripheral, that is, OM recognizes
both concepts as different, although they
have the same name printer (Figure
11).

3.	 Synonyms when considering their prop-
erties. If A has maize (“maize”) ⊂
cereal, color yellow, size 1cm, con-
tains hydrocarbons and B has corn
(“corn”) ⊂ cereal, color yellow, size
0.5inch, contains carbohydrates,
then case B of COM will correctly identify
maize and corn as synonyms, and thus
will contain maize (“maize”, “corn”)
⊂ cereal, color yellow, size 1cm
(0.5inch), contains hydrocarbons
(“hydrocarbon”, “carbohydrates”). That
is, corn and maize have many proper-
ties equal or similar (by recursive use of
COM). See Figure 3.

4.	 New knowledge. If one ontology knows
nothing about dinosaurs, and the other
has some concepts about them, then
C will contain each ontology’s unique
knowledge, appropriately referring to
knowledge common to both ontologies,
such as “legs” or “fly.”

Figure 2. Case A of COM Figure 3. Case C of COM

 391

A Language and Algorithm for Automatic Merging of Ontologies

5.	 Other cases where the knowledge in each
ontology is properly taken into account
are discussed in “Using OM. Examples,”
and by Cuevas-Rasgado (2006).

f.	 OM avoids placement of redundant relations.
If A contains lemon ⊂ fruit, and B contains
lemon ⊂ citric ⊂ fruit, then the result-
ing merged ontology C will contain lemon ⊂
citric ⊂ fruit, finding that A’s knowledge
(lemon ⊂ fruit) is redundant.

g. 	 The OM algorithm detects inconsistencies (con-
tradictions) in the knowledge in A vs. the knowl-
edge in B, using inconsistency measurements
(Jimenez, n.d.) and confusion. An example where
inconsistency is detected and solved is: Let A
contain AcmeCorp incorporated_in Maryland
and incorporated _ in arity 1; let B contain
AcmeCorp incorporated_in USA. OM detects an
(apparent) inconsistency between Maryland and
USA (two different concepts), which is solved
by conf because Maryland is part of USA,
conf(Maryland, USA)=0. Then, OM stores in
C AcmeCorp incorporated_in Maryland (but
it does not store in C AcmeCorp incorporated_in
USA). Nevertheless, when trying to merge A with
D which contains AcmeCorp incorporated_in
France, OM will detect a contradiction, since
the confusion between Maryland and France is
large, and incorporated_in is single-valued. Un-
able to solve this contradiction, OM keeps in C
the knowledge coming from A.20

h.	 Expunging redundant values. If A contains
George_Washington visited (Paris, Africa, Ma-
drid, Maryland) and B contains George_Wash-
ington visited (France, Morocco, Spain, USA,
Argentina), then OM uses confusion to prune
C to contain George_Washington visited (Paris,
Morocco, Madrid, Maryland, Argentina). Warn-
ing: In the presence of symbolic values (places
visited, in the example) at different hierarchy
levels, selecting the most specific values may
work, but there are other cases where the more
general values are preferred. More knowledge
is needed for OM to always solve correctly this

case. See the section on “Suggestions for Further
Work.”

i.	 Cuevas-Rasgado (2006) provides other heuris-
tics and rules that fortify OM.

Commercial Areas Ready to Exploit
OM

OM enables the automatic development of larger and
better ontologies. Also, with OM it is possible (but
see footnote 7) to generate on-demand ontologies,
tailored to the application needs.

Ontology merging is at its infancy (see the section
on “Suggestions for Further Work”). Its promise is the
automatic acquisition of relevant knowledge. How can
this help a business?

•	 Discovery of new markets. A glass factory in
Indonesia may discover that their small glasses
could be used in Mexico to drink tequila.

•	 Market trends. How many newspaper job ads
demand a manufacturing engineer? How many
require persons speaking Cantonese? (now done
through text mining).

•	 Business intelligence. Mexico has large oil
deposits in semifractured strata. How are other
nations exploiting similar beds? (now done
through word search of documents).

•	 Product improvement. Japanese consumers pay
dearly for a fruit similar to a prickly pear, but
without seeds. Can Jalisco adapt its prickly pears
to this market?

•	 Electronic commerce.
•	 Public relations monitoring. What is New York-

ers’ perception about the occupation of Irak?
And Australian citizens’ perception? (now done
through polls).

Additional areas where OM can be productively
used are: 18

Semantic Web: Crawlers need to understand19 large
amounts of Web-available information. Central
to this understanding is the assimilation of new

392

A Language and Algorithm for Automatic Merging of Ontologies

information in ways consistent with already
acquired knowledge. Use: to answer non-trivial
questions (see “Suggestions for Further Work”)
needing multiple Web sources.

Electronic Commerce: Agent A can enrich its ontology
(in order to acquire synonyms for its products,
to facilitate finding new customers, suppliers
or uses of its products) by joining its ontology
with suitable ontologies B, C, ... Such “enriched
agent” will understand better the queries and
needs from other agents (or human beings) that
may acquire products from A.

Virtual learning: Virtual book A in International
Finance can merge its ontology with the ontol-

ogy of another virtual book dealing with the
same or near-by topic. The enriched ontology
will be better suited for students learning from
A. Also, A can join its ontology with a “pre-
decessor” ontology from other book dealing
with Economics. This helps students to refresh
previous concepts.

Using OM: Examples

Figures 5 and 6 show only relevant parts of large
ontologies A, B and C.

Figure 4. Solving contradictions. conf(river, Hidrology)= 0 whereas conf(Hidrology, river)= 0.2

 393

A Language and Algorithm for Automatic Merging of Ontologies

Example 1: Ontology Merging in
spite of the Generality or Specificity
of Contents

Here we merge two ontologies of businesses that sell
tools for handcrafts.

Ontology A describes hammer with two sons:
carpenter hammer and blacksmith hammer
(Figure 5). Ontology B (Figure 6) contains a more
general description of hammer. During the merging

of A and B, OM detects that COM matches hammer
in A, and its two sons, with the (unique) hammer in
B (Figure 6).

Figure 7 presents concepts of A that have matched
with those of B and vice versa. A’s hammer has
matched with B’s hammer. When OM complements
the words and properties of hammer, it copies the
brothers of B’s hammer to C, but before that copying,
it searches each of these brothers in A.

Figure 5. Ontology A has deeper knowledge about hammer than ontology B

Figure 6. Ontology B has concepts screw and saw, inexistent in A

394

A Language and Algorithm for Automatic Merging of Ontologies

Figure 7. Mapping between A and B. Hammer, carpenter hammer, blacksmith hammer and nail from A match with
hammer in B (dotted lines). Heavy lines identify matches from B into A

Figure 8. Result C for example 1. Here, C is symmetric: A ∪ B = B ∪ A. In the presence of contradictions, such
symmetry may not hold (Cuevas, 2006; footnote 20)

 395

A Language and Algorithm for Automatic Merging of Ontologies

For screw in B, even when COM answers hammer
(from A) as the most similar concept in A (because
the parents of screw and hammer coincide), OM
compares their names: “hammer” and “screw”. Being
different, it considers screw as a new son of tool in
A, and it copies screw into the merged result as a new
node. The same happens to concept saw in B, and to
carpenter hammer, blacksmith hammer, and
nail in A (which are found by COM to be similar to
hammer in B): they all go to C, Figure 8.

Example 2: Merging Ontologies with
Mutually Inconsistent Knowledge

Differences in A and B’s knowledge arise from rep-
etitions, reference to the same facts through diverse
words, different level of details, type of description, and
contradictions. For instance, B contains: veteran John
Nash Sr. was born in Bluefield, while A contains:
mathematician John Forbes Nash was born in West
Virginia. Both ontologies duplicate some informa-
tion (Nash’s birthplace), different expressions (veteran
/ mathematician), different level of details (Bluefield
/ West Virginia), and contradictions (John Nash Sr.
/ John Forbes Nash). A person will have in her mind
a consistent combination of information: John Nash
Sr. and John Forbes Nash are not the same person, or
perhaps they are the same. If she knows them she may
deduce that one is the son of the other. We solve these
problems everyday via common sense knowledge and
previously acquired information. This is not so easy for
computers, since they lack everyday’s knowledge and
usually they don’t use, as OM, a previous knowledge
base (See “Knowledge Support for OM”). Also, OM
deals with inconsistency by measuring (step 2.a.iii of
its algorithm) conf(Bluefield, West Virginia). 20

Example 3: Joining Partitions,
Synonym Identification

Numbers in Figure 9 match those below, for easy
identification.

1.	 Copying new partitions. B has one partition:
printing technology. A has two partitions:
types and methods of image creation.
Thus, printing technology is added to C
(thin lines in Figure 9).

2.	 Copying concepts. procedure in B is copied to C,
because it is not found in A. Its ascendant (not
shown in Figure 9) is also copied to C.

3.	 Change into a (full) concept. Synonym identifica-
tion. Adding more semantics. Relation method in
A is copied to C; then, procedure in B is identified
as a synonym of method, so method in C changes
to procedure. In addition, procedure is a concept
in B (it was just a phrase in A)9, so it becomes
a full concept in C. Finally, new semantics is
added to procedure in C by adding to its defini-
tion print striking to the paper with
small pieces from B.

Example 4: Numbers in Figure 10
Match Those Below

4.	 Removing redundant relations. In A, liquid
inkjet printer ⊂ printer, whereas in
B liquid inkjet printer ⊂ non-im-
pact printer ⊂ printer. Adding both to
C would make liquid inkjet printer to
have two ascendants: printer and non-im-
pact printer. OM detects the redundancy
liquid inkjet printer ⊂ printer
and expunges it from C, to keep only liquid
inkjet printer ⊂ non-impact printer
⊂ printer.

5.	 Comparing relations (Figure 10). The relations
method in B and its method is in A are considered
to be the same, because connectors and, or, its,
and so forth, are ignored (see the section on
“Knowledge Support for OM”).

Example 5: Homonyms

Concepts printer in A (Figure 11) and in B have the
same syntax, but different semantics. OM finds them
different, as explained in Example 1.

396

A Language and Algorithm for Automatic Merging of Ontologies

Figure 9. Relations method in A and procedure in B are synonyms, thus both of their definitions are added to node
procedure in C

 397

A Language and Algorithm for Automatic Merging of Ontologies

Figure 10. Relations method in A and its method is in B are the same, so they are merged in a single relation
method in C (label 5)

Figure 11. Concepts printer in A and in B are found not to be the same, they both go to C (not shown) as two dif-
ferent concepts with the same name

398

A Language and Algorithm for Automatic Merging of Ontologies

Example 6: Promotion of Subsets to
Partitions

Figures 12 and 13. In A, Etnolinguistic group of Oaxaca
has subsets zoque set, ixcateco set, huave set and mix-
teco set, whereas in B, the same concept Etnolinguistic
group of Oaxaca has a partition with the same elements
that A has a subsets. Therefore, OM adds to C the
partition from B. (A small error: OM fails to remove
those elements as subsets from Etnolinguistic group of
Oaxaca in C).

Example 7: Unsuccessful Promotion
of Subset to Partition

It is not always possible to organize subsets into parti-
tions. Figure 14 shows concept stem in A matching
with stem in B. Thus, the partition Color belonging
to stem in B is considered for copying to C. This
partition has two elements: Gray and Green, which
are searched in A. OM finds that Gray and Green
are not descendants of stem in A.21 OM finds them
in Color in A (not shown in Figure 14), but they have

Figure 12. The partition Etnolinguistic in B is not in A, but before adding it to C, OM verifies that each of its ele-
ments (zoque set, ixcateco set…) are brothers in A and that no additional brother appears in A. These elements
are all descendants of Etnolinguistic group of Oaxaca (thus, they are brothers) and no additional brother appears
in A. Therefore, the partition Etnolinguistic from B is copied to concept Etnolinguistic group of Oaxaca in the
resulting ontology C. Sizes of complete ontologies: A = 234 nodes; B = 117

 399

A Language and Algorithm for Automatic Merging of Ontologies

Figure 13. The result C shows the partition Etnolinguistic added to the concept Etnolinguistic group of Oaxaca

Figure 14. B has a partition Color, while A does not have it

two additional brothers: white and red. Thus, they
are not added to C (Figure 15) as a partition of Color,
but as a partition of stem.

Additional Examples for
Real-World Cases

OM has been applied by Cuevas-Rasgado (2006) to
ontologies derived from Web documents (see their
URLs in the references), including:

400

A Language and Algorithm for Automatic Merging of Ontologies

•	 Geographic zones: two different documents
about Oaxaca

•	 Animals and flowers: two description of turtles,
two of poppies

•	 Biographies: two about Benito Juárez, two about
Newton

•	 Description of tools and products
•	 Novels: portions of 100 Years of Loneliness (two

different texts)

From these documents, ontologies were manually
written in OM notation, obtaining two ontologies for

each animal, flower, and so forth. Each pair of ontolo-
gies was merged (automatically) by OM. Validation of
results (more at the section entitled “Discussion”) has
been made by comparing against a person’s results,
yielding Table 1.

Conclusion

As the world becomes a global village, businesses
that do not adopt tools for automatic harvesting of
knowledge disseminated through the Web will be at

Figure 15. The resulting ontology C for example 7. Stem is partitioned into Green (that is, green stem) and Gray
(that is, gray stem) while color still has as subsets gray, green, white and red

 401

A Language and Algorithm for Automatic Merging of Ontologies

a disadvantage. Unfortunately, until now there were
only tools that partially met this need. The emergence
of OM provides new support.

OM is an automatic, robust algorithm that fuses the
knowledge from two ontologies into a third one, solving
some inconsistencies and avoiding redundancies.

The examples shown, as well as others (Cuevas-
Rasgado, 2006), illustrate the power of OM: in spite
of joining very general or very specific ontologies, it
generally does a good job. This is because OM not
only compares words, but it also takes into account
the semantics or context of each node in the source

Table 1. Performance of OM in some real-world examples

402

A Language and Algorithm for Automatic Merging of Ontologies

ontologies for copying or modifying new properties
and concepts into the resulting ontology. It also uses
its base knowledge (see the section on “Knowledge
Support for OM”).

Discussion

Syntactic vs. semantic analysis. OM builds data struc-
tures (in OM notation) from data structures, and thus
uses limited knowledge (its in-built knowledge, plus
the knowledge in A, plus the knowledge in B) and it
exploits “only” syntactic facts. OM does not pretend
to find “the truth”22 among two inconsistent relations,
but as more knowledge (more syntactic facts) come
into its built-in knowledge, it will do a better job. In
fact, when compared with the fusion done by a person
imbedded with semantic knowledge, OM already does
a reasonable job (Table 1), despite its “limited method-
ology” and its use of “only syntactic analysis.”

OM is automatic. Human intervention takes place
outside OM (see the section on “Additional Examples
for Real-World Cases”). OM will produce consistent
(no redundancies, no contradictions) and complete
(no concepts missing in the fusion) ontologies if it
were to achieve 100% accuracy (that is, the accuracy
of a person that does the merging by hand). This is
the goal of OM. How well does OM achieve its goal?
About 96% (see Table 1). The section on “Suggestions
for Further Work” explain how to improve further its
performance.

Verification of Results

How can we be sure that OM (or some other merger
tool) did a good job? We check (as in Table 1) for
wrong, missing, misplaced, or additional (but wrong)
relations and nodes in OM’s result, against the result
manually obtained by a person. At times, the person
uses previous knowledge to build nodes or relations in
the result that are impossible to be added by OM with
the information available to it. The person may add Dog
eats meat, among nodes Dog and meat, but neither

A nor B say this. We do not count these as mistakes,
but we mark them as “areas where more knowledge
should produce this result.” Another verification
method could use the editor-reasoner when built, in
order to pose questions to the resulting ontology, and
check its answers against the answers from a person.
These are subjective methods, but probably there could
never be (for this purpose) an objective method, where
a person’s opinion is absent. 23

Real World Examples and
Challenges

Until now, ontology merging was a machine-aided
activity, so few real world problems were tackled.
OM is the first automated tool for ontology merging,
but it has not yet tackled commercially interesting
problems. The examples in the chapter come from
ontologies obtained from documents found in the Web.
But the largest ontology produced by OM (that for a
portion of One Hundred Years of Loneliness, Table
1) has only 561 concepts (420 relations + 141 nodes).
Larger experiments need to be carried out.

Issues, problems and trends are touched upon in
that section.

Suggestions for Further
Work

•	 Commercial applications appearing in the sec-
tion on “Commercial Areas Ready to Exploit
OM.”

•	 As more knowledge is fused by OM, it could be
kept and used as its built-in knowledge (explained
in “Knowledge Support for OM”), to improve
its accuracy.

•	 OM could resort to external knowledge
sources—some are mentioned in “Knowledge
Support for OM.” These will help to eradicate
some of the arbitrary decisions that current OM
makes:

 403

A Language and Algorithm for Automatic Merging of Ontologies

o	 Uncertain handling of Case C, footnote
16

o	 Preferring its own knowledge, footnote
20

o	 Expunging redundant values, contribution
h

o	 Mistake in Example 6
•	 Another improvement may come from adding

more similarity measures, see “Confusion.”

Needed extensions to OM are:

•	 Handling of time. When young, Juárez was
a law student; later he became Governor of
Oaxaca, then President of the Supreme Court,
then President of Mexico; at that time he fought
against Emperor Maximiliam of Habsburg…

•	 Representing and merging disjunctions. Ann
bought (a candy or an ice cream).

•	 How to represent (and merge) beliefs.
•	 How to represent conditionals and in general

logic restrictions in a way that OM can analyze,
check (for mutual inconsistency, say), improve,
and change them. They should not be opaque to
OM machinery.

Tools external to OM that will extend OM’s appli-
cability:

•	 A parser that transforms a document into a data
structure using OM notation. A difficult task
(footnote 7).

•	 A deductive machinery (a reasoner) that answers
complex questions posed to the ontology perhaps
as graphs, to avoid using a natural language
interface.

•	 Those in footnote 7.

With these, the goal of attaining a large knowledge
ontology (see the section on “Increased Yield Through
Better Processing the Web Resources”), ready to an-
swer difficult questions, could be achieved—building
it incrementally by a tool, not by hand. Let us call this
extended tool OM*. And what could be its use? Well,

we could add it to our system software, perhaps as a
part of the operating system. In the same manner as
current word processors check for spelling and gram-
mar, OM* would check documents or data bases for
factual or semantic mistakes (assertions not agreeing
with OM*’s knowledge), tagging for instance sentences
or rows in a data base such as “Abraham Lincoln was
born in Japan,” “The applicant’s age is 27, and he has
been working in his previous job for 25 years,” or
“the shoe has hepatitis.” In addition to common sense
knowledge, OM* will provide real world knowledge
to the computer. This sounds like exaggerations and
wild thoughts, so we shall stop here and concentrate
instead in the construction of missing parts of OM*.

Acknowledgment

We acknowledge support from CONACYT Grant
43377.

References

AKT project. Retrieved June 26, 2007, from http://
plainmoor.open.ac.uk/ocml/domains/aktive-portal-
ontology/techs.html

Asunción, P., & Suárez, M. (2004). Evaluation of
RDF[S] and DAML+OIL import/export services
within ontology platforms. Lecture Notes in Artificial
Intelligence, 2972, 109-118.

Bechnofer, S., van Harmelen, F., Hendler, J., Hor-
rocks, I., McGuinness, D., Patel-Schneider, P. et al.
(2004, February 10). OWL Web ontology language
(reference). W3C Recommendation. Retrieved June
26, 2007, from http://www.w3.org/TR/2004/REC-
owl-ref-20040210/

Connolly, D., van Harmelen, F., Horrocks, I., Mc-
Guinnes, D., Patel-Schneider, P., & Stein, L. (2001,
March). DAML+OIL reference description. W3C Note,
December, 18, 2001. Retrieved June 26, 2007, from
from http://www.w3.org/TR/2001/NOTE-daml+oil-
reference-20011218

404

A Language and Algorithm for Automatic Merging of Ontologies

Cuevas-Rasgado, A.A. (2006). Merging of ontologies
using semantic properties. Unpublished doctoral dis-
sertation (in Spanish), CIC-IPN, Mexico. Retrieved
June 26, 2007, from http://148.204.20.100:8080/bib-
liodigital/ShowObject.jsp?idobject=34274&idreposit
orio=2&type=recipiente

Domingue, J., Motta, E., & Corcho, O. Knowledge
modeling in WeboOnto and OCML, A user guide
(Version 2.4). The Open University and Knowledge
Media Institute.

Dou, D., McDermott, D., & Qi, P. (2002). Ontology
translation by ontology merging and automated rea-
soning. In Proc. EKAW Workshop on Ontologies for
Multi-Agent Systems.

Ganter, B., Stumme, G., & Wille, R. (2005). Formal
concept analysis: Foundations and applications (1st
ed.). New York, NY: Springer

Guzman, A., & Levachkine, S. (2004). Hierarchies
measuring qualitative variables. Lecture Notes in
Computer Science (LNCS), 2945, 262-274.

Guzman, A., & Olivares, J. (2004). Finding the most
similar concepts in two different ontologies. Lecture
Notes in Artificial Intelligence (LNAI), 2972, 129-
138.

Jimenez, A. (n.d.). Quantifying inconsistencies in
sentences (facts) with symbolic values. Ph. D. thesis.
CIC-IPN, Mexico.

Kalfoglou, Y., & Schorlemmer, M. (2002). Informa-
tion-flow-based ontology mapping. In Proceedings
of the 1st International Conference on Ontologies,
Databases, and Applicatio of Semantics.

Knowledge Interchange Format. Draft proposed.
American National Standard [dp ANS] NCITS.
T2/98-004. Retrieved June 26, 2007, from http://logic.
stanford.edu/kif/dpans.html

Kotis, K., Vouros, G., & Stergiou. K. (2006). Towards
automatic of domain ontologies: The HCONE-merge
approach. Elsevier’s Journal of Web Semantic, 4(1),

60-79. Retrieved June 26, 2007, from http://authors.
elsevier.com/sd/article/S1570826805000259

Large Resources. Ontologies (SENSUS) and Lexicons.
Retrieved June 26, 2007, from http://www.isi.edu/natu-
ral-language/projects/ONTOLOGIES.html

Lenat, D., & Guha. R. (1989). Building large knowl-
edge-based systems. Addison-Wesley.

Loom. Retrieved June 26, 2007, from http://www.isi.
edu/isd/LOOM/LOOM-HOME.html

Madhavan, J., Bernstein, P., & Rahm, E. (2001).
Generic schema matching using Cupid. In 27th In-
ternational Conference on Very Large Data Bases,
Rome, Italy.

Manola, F., & Miller, E. (2004). RDF primer. W3C
Recommendation. Retrieved June 26, 2007, from http://
www.w3.org/TR/2004/REC-rdf-primer-20040210/

McGuinness, D., Fikes, R., Rice, J., & Wilder, S. (2000).
The chimaera ontology environment knowledge. In
Proceedings of the Eighth International Conference
on Conceptual Structures Logical, Linguistic, and
Computational Issues, Darmstadt, Germany.

Noy, N., & A. Musen, M. (2000). PROMPT: Algoritm
and tool for automated ontology merging and align-
ment. In Proceedings of the National Conference on
Artificial Intelligence, Stanford Medical Informatics,
Stanford University, CA.

Ontologies about Benito Juarez. Retrieved June 26,
2007, from http://es.wikipedia.org/wiki/Benito_
Ju%C3%A1rez and http://www.artehistoria.com/his-
toria/personajes/6496.htm

Ontologies about cien años de soledad. Retrieved June
26, 2007, from http://html.rincondelvago.com/cien-
anos-de-soledad_gabriel-garcia-marquez_22.html
and http://www.monografias.com/trabajos10/ciso/ciso.
shtml

Ontologies about Newton. Retrieved June 26, 2007,
from http://es.wikipedia.org/wiki/Isaac_Newton and
http://thales.cica.es/rd/Recursos/rd97/Biografias/03-
1-b-newton.html

 405

A Language and Algorithm for Automatic Merging of Ontologies

Ontologies about Oaxaca. Retrieved June 26, 2007,
from http: www.oaxaca-mio.com/atrac_turisticos/
infooaxaca.htm and http: www.elbalero.gob.mx/ex-
plora/html/oaxaca/geografia.html

Ontologies about poppy. Retrieved June 26, 2007, from
http://es.wikipedia.org/wiki/Amapola and http://www.
buscajalisco.com/bj/salud/herbolaria.php?id=1

Ontologies about tools and products. Retrieved June
26, 2007, from http://sumesa.com/

Ontologies about turtles. Retrieved June 26, 2007,
from www.damisela.com/zoo/rep/tortugas/index.htm
and http://www.foyel.com/cartillas/37/tortugas_-_ac-
cesorios_para_acuarios_i.html

Serafini, L., Bouquet, B., Magnini, P., & Zanobini,
S. (2003). An algorithm for matching contextualized
schemas vio SAT. In Proceedings of CONTEXT 03.

Stumme, G., & Maedche, A. (2002). Ontology merging
for federated ontologies on the semantic Web. In E.
Franconi, K. Barker & D. Calvanese (Eds.), Proc. Intl.
Workshop on Foundations of Models for Information
Integration. Viterbo, Italy: Springer.

WEB Onto. Retrieved June 26, 2007, from http://
137.108.64.26:3000/webonto?ontology=AKTIVE-
PORTAL-ONTOLOGY&name=TECHNOLOGY&
type=CLASS

Endnotes

1	 An easy task for a person who uses context and
previous knowledge.

2	 Other important problems (question-answering,
reasoning, the handling of time, how to represent
beliefs, and so forth; see “Suggestions for Further
Work”) are outside the scope of this chapter.

3	 OM forges ahead and does not fall into loops.
4	 Without contradictions.
5	 The result contains all available knowledge from

the sources, avoiding redundancies.
6	 Without user intervention.

7	 A Ph.D. Thesis in progress by Paola Neri seeks
to make such translation.

8	 Some representations are even more restrictive: an
ontology has to be a tree. In these, a concept could
not have two parents: Mexico could not be both a
nation and an emerging market.

9	 A relation may be a (full) concept or just a name,
a label, a “shallow” relation. Same applies to
concepts.

10	 Another example: the relation to light (that is, to
illuminate) may also be a concept, if one wishes
to add more properties to this action. A differ-
ent concept that can also be represented is light
(that is, an electromagnetic radiation). OM does
not consider them equivalent, even if somebody
gave them the same name. OM has machinery
to identify homonyms (contribution e.2).

11	 Ontology C is incrementally constructed, start-
ing from ontology A (step 1). In step 2, OM first
adds to C nodes in a “superficial” manner (only
the label, description, and implicit relations are
copied), later in that step 2 these nodes will be
completed and “deeply” copied. See footnote
12.

12	 Deep copying. OM finishes copying a node
already superficially copied, adding to it its
explicit relations. These new relations link to
other concepts, which could already be in C. If
they are not, they are now superficially copied,
and later they, in turn, will be deeply copied.

13	 Ontology C is searched depth-first. A branch of
the tree is traveled until the deepest descendant
is reached, before OM considers another branch.
Since the OM notation uses trees, OM finds easy
to do these travels.

14	 For instance, in A we find impact printer
method uses force… (Figure 9) and in B
we find impact printer procedure uses
print striking to the paper and CC
= impact printer in A has a most similar
concept cms = impact printer in B, and
method and procedure are found by OM to be
synonyms. Then all the words in the definition

406

A Language and Algorithm for Automatic Merging of Ontologies

of procedure in B are copied into the definition
of method in C (Figure 9).

15	 Or grandparent, or great-grand parent.
16	 This may be a mistake. More information is

needed if OM were always to make the right
decision. More at “Suggestions for Further
Work.”

17	 In C= A ∪ B, OM assumes A, B, C to be self-
consistent. But mutual inconsistency can arise
when joining A and B.

18	 Progress will be slow until better tools appear
(like OM*) and businesses become aware of
them.

19	 To understand x means: to process, exploit, make
intelligent inferences about x. Pragmatically, a
program understands some text, information, or

situation when such program can productively
use it to advance in its goals and objectives.

20	 As last resort, if B’s new knowledge is incon-
sistent with A’s knowledge, A refuses to acquire
this new knowledge.

21	 If Gray and Green were the only descendants
of its ascendant (Color), the partition would be
added to Color.

22	 How can a program that diagnoses EKG anoma-
lies be checked: (1) by comparing its results
against experts’ diagnosis (subjective method),
and (2) by checking reality, for example, an au-
topsy of the person will show his heart’s ailments
(objective method). But the purpose of OM is
not to find out what is true in the real world; its
purpose is to build a consistent C from A, B and
its previous knowledge.

